1,705 research outputs found

    Large entropy production inside black holes: a simple model

    Full text link
    Particles dropped into a rotating black hole can collide near the inner horizon with enormous energies. The entropy produced by these collisions can be several times larger than the increase in the horizon entropy due to the addition of the particles. In this paper entropy is produced by releasing large numbers of neutrons near the outer horizon of a rotating black hole such that they collide near the inner horizon at energies similar to those achieved at the Relativistic Heavy Ion Collider. The increase in horizon entropy is approximately 80 per dropped neutron pair, while the entropy produced in the collisions is 160 per neutron pair. The collision entropy is produced inside the horizon, so this excess entropy production does not violate Bousso's bound limiting the entropy that can go through the black hole's horizon. The generalized laws of black hole thermodynamics are obeyed. No individual observer inside the black hole sees a violation of the second law of thermodynamicsComment: 10 page

    A wide-spectrum language for verification of programs on weak memory models

    Full text link
    Modern processors deploy a variety of weak memory models, which for efficiency reasons may (appear to) execute instructions in an order different to that specified by the program text. The consequences of instruction reordering can be complex and subtle, and can impact on ensuring correctness. Previous work on the semantics of weak memory models has focussed on the behaviour of assembler-level programs. In this paper we utilise that work to extract some general principles underlying instruction reordering, and apply those principles to a wide-spectrum language encompassing abstract data types as well as low-level assembler code. The goal is to support reasoning about implementations of data structures for modern processors with respect to an abstract specification. Specifically, we define an operational semantics, from which we derive some properties of program refinement, and encode the semantics in the rewriting engine Maude as a model-checking tool. The tool is used to validate the semantics against the behaviour of a set of litmus tests (small assembler programs) run on hardware, and also to model check implementations of data structures from the literature against their abstract specifications

    Automated Algebraic Reasoning for Collections and Local Variables with Lenses

    Get PDF
    Lenses are a useful algebraic structure for giving a unifying semantics to program variables in a variety of store models. They support efficient automated proof in the Isabelle/UTP verification framework. In this paper, we expand our lens library with (1) dynamic lenses, that support mutable indexed collections, such as arrays, and (2) symmetric lenses, that allow partitioning of a state space into disjoint local and global regions to support variable scopes. From this basis, we provide an enriched program model in Isabelle/UTP for collection variables and variable blocks. For the latter, we adopt an approach first used by Back and von Wright, and derive weakest precondition and Hoare calculi. We demonstrate several examples, including verification of insertion sor

    Refinement algebra for probabilistic programs

    Get PDF
    We identify a refinement algebra for reasoning about probabilistic program transformations in a total-correctness setting. The algebra is equipped with operators that determine whether a program is enabled or terminates respectively. As well as developing the basic theory of the algebra we demonstrate how it may be used to explain key differences and similarities between standard (i.e. non-probabilistic) and probabilistic programs and verify important transformation theorems for probabilistic action systems.29 page(s

    Dietary elimination of children with food protein induced gastrointestinal allergy – micronutrient adequacy with and without a hypoallergenic formula?

    Get PDF
    Background: The cornerstone for management of Food protein-induced gastrointestinal allergy (FPGIA) is dietary exclusion; however the micronutrient intake of this population has been poorly studied. We set out to determine the dietary intake of children on an elimination diet for this food allergy and hypothesised that the type of elimination diet and the presence of a hypoallergenic formula (HF) significantly impacts on micronutrient intake. Method: A prospective observational study was conducted on children diagnosed with FPIGA on an exclusion diet who completed a 3 day semi-quantitative food diary 4 weeks after commencing the diet. Nutritional intake where HF was used was compared to those without HF, with or without a vitamin and mineral supplement (VMS). Results: One-hundred-and-five food diaries were included in the data analysis: 70 boys (66.7%) with median age of 21.8 months [IQR: 10 - 67.7]. Fifty-three children (50.5%) consumed a HF and the volume of consumption was correlated to micronutrient intake. Significantly (p <0.05) more children reached their micronutrient requirements if a HF was consumed. In those without a HF, some continued not to achieve requirements in particular for vitamin D and zinc, in spite of VMS. Conclusion: This study points towards the important micronutrient contribution of a HF in children with FPIGA. Children, who are not on a HF and without a VMS, are at increased risk of low intakes in particular vitamin D and zinc. Further studies need to be performed, to assess whether dietary intake translates into actual biological deficiencies

    Analysing and Recommending Options for Maintaining Universal Coverage with Long-Lasting Insecticidal Nets: The Case of Tanzania in 2011.

    Get PDF
    Tanzania achieved universal coverage with long-lasting insecticidal nets (LLINs) in October 2011, after three years of free mass net distribution campaigns and is now faced with the challenge of maintaining high coverage as nets wear out and the population grows. A process of exploring options for a continuous or "Keep-Up" distribution system was initiated in early 2011. This paper presents for the first time a comprehensive national process to review the major considerations, findings and recommendations for the implementation of a new strategy. Stakeholder meetings and site visits were conducted in five locations in Tanzania to garner stakeholder input on the proposed distribution systems. Coverage levels for LLINs and their decline over time were modelled using NetCALC software, taking realistic net decay rates, current demographic profiles and other relevant parameters into consideration. Costs of the different distribution systems were estimated using local data. LLIN delivery was considered via mass campaigns, Antenatal Care-Expanded Programme on Immunization (ANC/EPI), community-based distribution, schools, the commercial sector and different combinations of the above. Most approaches appeared unlikely to maintain universal coverage when used alone. Mass campaigns, even when combined with a continuation of the Tanzania National Voucher Scheme (TNVS), would produce large temporal fluctuations in coverage levels; over 10 years this strategy would require 63.3 million LLINs and a total cost of 444millionUSD.Communitymechanisms,whileabletodelivertherequirednumbersofLLINs,wouldrequireamassivescaleupinmonitoring,evaluationandsupervisionsystemstoensureaccurateapplicationofidentificationcriteriaatthecommunitylevel.SchoolbasedapproachescombinedwiththeexistingTNVSwouldreachmostTanzanianhouseholdsanddeliver65.4millionLLINsover10yearsatatotalcostof444 million USD. Community mechanisms, while able to deliver the required numbers of LLINs, would require a massive scale-up in monitoring, evaluation and supervision systems to ensure accurate application of identification criteria at the community level. School-based approaches combined with the existing TNVS would reach most Tanzanian households and deliver 65.4 million LLINs over 10 years at a total cost of 449 million USD and ensure continuous coverage. The cost of each strategy was largely driven by the number of LLINs delivered. The most cost-efficient strategy to maintain universal coverage is one that best optimizes the numbers of LLINs needed over time. A school-based approach using vouchers targeting all students in Standards 1, 3, 5, 7 and Forms 1 and 2 in combination with the TNVS appears to meet best the criteria of effectiveness, equity and efficiency

    Automating Verification of State Machines with Reactive Designs and Isabelle/UTP

    Full text link
    State-machine based notations are ubiquitous in the description of component systems, particularly in the robotic domain. To ensure these systems are safe and predictable, formal verification techniques are important, and can be cost-effective if they are both automated and scalable. In this paper, we present a verification approach for a diagrammatic state machine language that utilises theorem proving and a denotational semantics based on Unifying Theories of Programming (UTP). We provide the necessary theory to underpin state machines (including induction theorems for iterative processes), mechanise an action language for states and transitions, and use these to formalise the semantics. We then describe the verification approach, which supports infinite state systems, and exemplify it with a fully automated deadlock-freedom check. The work has been mechanised in our proof tool, Isabelle/UTP, and so also illustrates the use of UTP to build practical verification tools.Comment: 18 pages, 16th Intl. Conf. on Formal Aspects of Component Software (FACS 2018), October 2018, Pohang, South Kore

    Thermal photons in QGP and non-ideal effects

    Full text link
    We investigate the thermal photon production-rates using one dimensional boost-invariant second order relativistic hydrodynamics to find proper time evolution of the energy density and the temperature. The effect of bulk-viscosity and non-ideal equation of state are taken into account in a manner consistent with recent lattice QCD estimates. It is shown that the \textit{non-ideal} gas equation of state i.e ϵ3P0\epsilon-3\,P\,\neq 0 behaviour of the expanding plasma, which is important near the phase-transition point, can significantly slow down the hydrodynamic expansion and thereby increase the photon production-rates. Inclusion of the bulk viscosity may also have similar effect on the hydrodynamic evolution. However the effect of bulk viscosity is shown to be significantly lower than the \textit{non-ideal} gas equation of state. We also analyze the interesting phenomenon of bulk viscosity induced cavitation making the hydrodynamical description invalid. We include the viscous corrections to the distribution functions while calculating the photon spectra. It is shown that ignoring the cavitation phenomenon can lead to erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE

    Investigating preferences for mosquito-control technologies in Mozambique with latent class analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is common practice to seek the opinions of future end-users during the development of innovations. Thus, the aim of this study is to investigate latent classes of users in Mozambique based on their preferences for mosquito-control technology attributes and covariates of these classes, as well as to explore which current technologies meet these preferences.</p> <p>Methods</p> <p>Surveys were administered in five rural villages in Mozambique. The data were analysed with latent class analysis.</p> <p>Results</p> <p>This study showed that users' preferences for malaria technologies varied, and people could be categorized into four latent classes based on shared preferences. The largest class, constituting almost half of the respondents, would not avoid a mosquito-control technology because of its cost, heat, odour, potential to make other health issues worse, ease of keeping clean, or inadequate mosquito control. The other three groups are characterized by the attributes which would make them avoid a technology; these groups are labelled as the bites class, by-products class, and multiple-concerns class. Statistically significant covariates included literacy, self-efficacy, willingness to try new technologies, and perceived seriousness of malaria for the household.</p> <p>Conclusions</p> <p>To become widely diffused, best practices suggest that end-users should be included in product development to ensure that preferred attributes or traits are considered. This study demonstrates that end-user preferences can be very different and that one malaria control technology will not satisfy everyone.</p

    How external and internal resources influence user action: the case of infusion devices

    Get PDF
    Human error can have potentially devastating consequences in contexts such as healthcare, but there is a rarely a simple dichotomy between errors and correct behaviour. Furthermore, there has been little consideration of how the activities of users (erroneous and otherwise) relate to the conceptual fit between user and device, despite the fact that healthcare technologies are becoming increasingly prevalent and complex. In this article, we present a study in which nurses’ conceptions of infusion device practice were elicited to identify misfits. By focusing on key concepts that users work with when setting up infusions and the extent to which the system supports them, our analysis highlights how actions are influenced by the different resources available to users including: the device itself; supporting artefacts; the conceptual understanding of the user; and the community of practice the user is part of. The findings reveal the ways in which users are resourceful in their day-to-day activities and also suggest potential vulnerabilities within the wider system that could threaten patient safety. Our approach is able to make previously under-explored aspects of practice visible, thus enabling insight into how users act and why
    corecore